Catalogue

Record Details

Catalogue Search


Back To Results
Showing Item 1 of 1

Total chemical synthesis of proteins  Cover Image Book Book

Total chemical synthesis of proteins

Brik, Ashraf (editor.). Dawson, Philip (editor.). Liu, Lei, 1977- (editor.).

Summary: With contributions from a panel of experts representing a range of disciplines, Total Chemical Synthesis of Proteins presents a carefully curated collection of synthetic approaches and strategies for the total synthesis of native and modified proteins.

Record details

  • ISBN: 9783527346608 (hardcover)
  • Physical Description: print
    xv, 604 pages : illustrations (some color) ; 25 cm
  • Publisher: Weinheim, Germany : Wiley-VCH, [2021]

Content descriptions

Bibliography, etc. Note: Includes bibliographical references and index.
Formatted Contents Note: Characterization of protein molecules prepared by total chemical synthesis -- Automated fast flow peptide synthesis -- N, S- and N, Se-Acyl transfer devices in protein synthesis -- Chemical synthesis of proteins through native chemical ligation of peptide hydrazides -- Chemical synthesis of proteins through native chemical ligation of peptide hydrazides -- Expanding native chemical ligation methodology with synthetic amino acid derivatives -- Peptide ligations at sterically demanding sites -- Controlling segment solubility in large protein synthesis -- Toward HPLC-free total chemical synthesis of proteins -- Solid-phase chemical ligation -- Ser/Thr ligation for protein chemical synthesis -- Protein semisynthesis -- Bio-orthoganl imine chemistry in chemical protein synthesis -- Deciphering protein folding using chemical protein synthesis -- Chemical synthesis of ubiquitinated proteins for biochemical studies -- Glycoprotein synthesis -- Chemical synthesis of membrane proteins -- Chemical synthesis of selenoproteins -- Histone synthesis -- Application of chemical synthesis to engineer protein backbone connectivity -- Beyond phosphate esters : synthesis of unusually phosphorylated peptides and proteins for proteomic research -- Cyclic peptides via ligation methods.
Subject: Proteins -- Synthesis

Available copies

  • 1 of 1 copy available at University College of the North Libraries.

Holds

  • 0 current holds with 1 total copy.
Show All Copies
Location Call Number / Copy Notes Barcode Shelving Location Holdable? Status Due Date
The Pas Campus Library QD 431.25 .S93 T683 2021 (Text) 58500000809178 Stacks Volume hold Available -

Preface xvii
1 Characterization of Protein Molecules Prepared by Total Chemical Synthesis 1(16)
Stephen B.H. Kent
1.1 Introduction
1(1)
1.2 Chemical Protein Synthesis
2(6)
1.3 Comments on Characterization of Synthetic Protein Molecules
8(4)
1.3.1 Homogeneity
8(1)
1.3.2 Amino Acid Sequence
9(1)
1.3.3 Chemical Analogues
10(1)
1.3.4 Limitations of SPPS
10(1)
1.3.5 Folding as a Purification Step
10(2)
1.4 Summary
12(1)
References
12(5)
2 Automated Fast Flow Peptide Synthesis 17(42)
Mark D. Simon
Alexander J. Mijalis
Kyle A. Totaro
Daniel Dunkelmann
Alexander A. Vinogradov
Chi Zhang
Yuta Maki
Justin M. Wolfe
Jessica Wilson
Andrei Loas
Bradley L. Pentelute
2.1 Introduction
17(2)
2.2 Results
19(30)
2.2.1 Summary
19(2)
2.2.1.1 Mechanical Principles
20(1)
2.2.1.2 Chemical Principles
20(1)
2.2.1.3 User Interface Principles
20(1)
2.2.1.4 Data Analysis Method
20(1)
2.2.1.5 Outcome
21(1)
2.2.2 First-generation Automated Fast Flow Peptide Synthesis
21(3)
2.2.2.1 Key Findings
21(1)
2.2.2.2 Design of First-generation AFPS
21(2)
2.2.2.3 Characterization of First-generation AFPS
23(1)
2.2.3 Second-generation Automated Fast Flow Peptide Synthesis
24(8)
2.2.3.1 Key Findings
24(1)
2.2.3.2 Design of Second-generation AFPS
24(2)
2.2.3.3 Characterization and Use of Second-generation AFPS
26(6)
2.2.4 Third-generation Automated Fast Flow Peptide Synthesis
32(13)
2.2.4.1 Key Findings
32(2)
2.2.4.2 Design of Third-generation AFPS
34(5)
2.2.4.3 Characterization of Third-generation AFPS
39(4)
2.2.4.4 Reagent Stability Study
43(2)
2.2.5 Fourth-generation Automated Fast Flow Peptide Synthesis
45(16)
2.2.5.1 Key Findings
45(1)
2.2.5.2 Effect of Solvent on Fast Flow Synthesis
45(1)
2.2.5.3 Design and Characterization of Fourth-generation AFPS
45(4)
2.3 Conclusions
49(4)
Acknowledgments
53(1)
References
53(6)
3 N,S- and N,Se-Acyl Transfer Devices in Protein Synthesis 59(28)
Vincent Diemer
Jennifer Bouchenna
Florent Kerdraon
Vangelis Agouridas
Oleg Melnyk
3.1 Introduction
59(2)
3.2 N,S- and N,Se-Acyl Transfer Devices: General Presentation, Reactivity and Statistical Overview of Their Utilization
61(7)
3.2.1 General Presentation of N,S- and N,Se-Acyl Transfer Devices
61(2)
3.2.2 Relative Reactivity of N,S- and N,Se-Acyl Transfer Devices
63(1)
3.2.3 A Statistical Overview of the Synthetic Use of N,S- and N,Se-Acyl Transfer Devices for Protein Total Chemical Synthesis
64(4)
3.3 Preparation of SEA/SeEAoff and SEAlide Peptides
68(3)
3.3.1 Preparation of SEA and SeEA Peptides
68(2)
3.3.2 Preparation of SEAlide Peptides
70(1)
3.4 Redox-controlled Assembly of Biotinylated NK1 Domain of the Hepatocyte Growth Factor (HGF) Using SEA and SeEA Chemistries
71(4)
3.5 The Total Chemical Synthesis of GM2-AP Using SEAlide-based Chemistry
75(4)
3.6 Conclusion
79(1)
References
80(7)
4 Chemical Synthesis of Proteins Through Native Chemical Ligation of Peptide Hydrazides 87(32)
Chao Zuo
Xiaodan Tan
Xianglong Tan
Lei Liu
4.1 Introduction
87(1)
4.2 Development of Peptide Hydrazide-based Native Chemical Ligation
88(3)
4.2.1 Conversion of Peptide Hydrazide to Peptide Azide
88(1)
4.2.2 Acyl Azide-based Solid-phase Peptide Synthesis
88(1)
4.2.3 Acyl Azide-based Solution-phase Peptide Synthesis
89(1)
4.2.4 The Transesterification of Acyl Azide
90(1)
4.2.5 Development of Peptide Hydrazide-based Native Chemical Ligation
90(1)
4.3 Optimization of Peptide Hydrazide-based Native Chemical Ligation
91(8)
4.3.1 Preparation of Peptide Hydrazides
91(3)
4.3.1.1 2-Cl-Trt-Cl Resin
91(1)
4.3.1.2 Peptide Hydrazides from Expressed Proteins
92(1)
4.3.1.3 Sortase-mediated Hydrazide Generation
93(1)
4.3.2 Activation Methods of Peptide Hydrazide
94(1)
4.3.2.1 Knorr Pyrazole Synthesis
94(1)
4.3.2.2 Activation in TFA
94(1)
4.3.3 Ligation Sites of Peptide Hydrazide
95(1)
4.3.4 Multiple Fragment Ligation Based on Peptide Hydrazide
96(3)
4.3.4.1 N-to-C Sequential Ligation
96(1)
4.3.4.2 Convergent Ligation
96(1)
4.3.4.3 One-pot Ligation
96(3)
4.4 Application of Peptide Hydrazide-based Native Chemical Ligation
99(14)
4.4.1 Peptide Drugs and Diagnostic Tools
99(3)
4.4.1.1 Peptide Hydrazides for Cyclic Peptide Synthesis
99(1)
4.4.1.2 Screening for D Peptide Inhibitors Targeting PD-L1
99(2)
4.4.1.3 Chemical Synthesis of DCAF for Targeted Antibody Blocking
101(1)
4.4.1.4 Peptide Toxins
101(1)
4.4.2 Synthesis and Application of Two-photon Activatable Chemokine CCL5
102(1)
4.4.3 Proteins with Posttranslational Modification
103(5)
4.4.3.1 The Synthesis of Glycosylation-modified Full-length IL-6
103(2)
4.4.3.2 The Chemical Synthesis of EPO
105(1)
4.4.3.3 Chemical Synthesis of Homogeneous Phosphorylated p62
105(1)
4.4.3.4 Chemical Synthesis of K19, K48 Bi-acetylated Atg3 Protein
105(3)
4.4.4 Ubiquitin Chains
108(2)
4.4.4.1 Synthesis of K27-linked Ubiquitin Chains
108(1)
4.4.4.2 Synthesis of Atypical Ubiquitin Chains by Using an Isopeptide-linked Ub Isomer
109(1)
4.4.4.3 Synthesis of Atypical Ubiquitin Chains Using an Isopeptide-linked Ub Isomer
109(1)
4.4.5 Modified Nucleosomes
110(2)
4.4.5.1 Synthesis of DNA-barcoded Modified Nucleosome Library
110(1)
4.4.5.2 Synthesis of Modified Histone Analogs with a Cysteine Aminoethylation-assisted Chemical Ubiquitination Strategy
111(1)
4.4.5.3 Synthesis of Ubiquitylated Histones for Examination of the Deubiquitination Specificity of USP51
111(1)
4.4.6 Membrane Proteins
112(1)
4.4.7 Mirror-image Biological Systems
112(1)
4.5 Summary and Outlook
113(1)
References
114(5)
5 Expanding Native Chemical Ligation Methodology with Synthetic Amino Acid Derivatives 119(42)
Emma E. Watson
Lara R. Matins
Richard J. Payne
5.1 Native Chemical Ligation
120(1)
5.2 Desulfurization Chemistries
120(2)
5.3 Aspartic Acid (Asp, D)
122(2)
5.4 Glutamic Acid (Glu, E)
124(1)
5.5 Phenylalanine (Phe, F)
125(2)
5.6 Isoleucine (Ile, I)
127(3)
5.7 Lysine (Lys, K)
130(3)
5.8 Leucine (Leu, L)
133(2)
5.9 Asparagine (Asn, N)
135(3)
5.10 Proline (Pro, P)
138(1)
5.11 Glutamine (Gln, Q)
139(1)
5.12 Arginine (Arg, R),
139(1)
5.13 Threonine (Thr, T)
140(2)
5.14 Valine (Val, V)
142(2)
5.15 Tryptophan (Trp, W)
144(2)
5.16 Application of Selenocysteine (Sec) to Ligation Chemistry
146(1)
5.17 Aspartic Acid (Asp, D)
147(1)
5.18 Glutamic Acid (Glu, E)
148(1)
5.19 Phenylalanine (Phe, F)
149(2)
5.20 Leucine (Leu, L)
151(1)
5.21 Proline (Pro, P)
151(2)
5.22 Serine (Ser, S)
153(2)
References
155(6)
6 Peptide Ligations at Sterically Demanding Sites 161(24)
Yinglu Wang
Suwei Dong
6.1 Introduction
161(1)
6.2 Ligations Using Thioesters
162(8)
6.2.1 Exogenous Additive-promoted Ligations
162(5)
6.2.2 Ligations Using Reactive Thioesters
167(2)
6.2.3 Internal Activation Strategy in Peptide Ligations
169(1)
6.3 Ligations Using Oxo-esters
170(1)
6.4 Peptide Ligations Based on Selenoesters
170(5)
6.5 Microfluidics-promoted NCL
175(3)
6.6 Representative Applications in Protein Synthesis
178(3)
6.7 Summary and Outlook
181(1)
References
181(4)
7 Controlling Segment Solubility in Large Protein Synthesis 185(26)
Riley J. Giesler
James M. Fulcher
Michael T. Jacobsen
Michael S. Kay
7.1 Solvent Manipulation
185(2)
7.2 Isoacyl Strategy
187(4)
7.3 Semipermanent Solubilizing Tags
191(7)
7.3.1 N- or C-Terminal Solubilizing "Tails"
192(2)
7.3.2 Reversible Backbone Modifications as Solubilizing Tags
194(1)
7.3.3 Building Block Solubilizing Tags
195(1)
7.3.4 Extendable Side-chain-based Solubilizing Tags
195(3)
References
198(13)
8 Toward HPLC-free Total Chemical Synthesis of Proteins 211(48)
Phuc Ung
Oliver Seitz
8.1 Introduction
211(2)
8.1.1 Capture and Release Purification
212(1)
8.1.2 Solid-phase Chemical Ligations (SPCL)
212(1)
8.2 Synthesis of Peptide Segments for Native Chemical Ligation
213(7)
8.2.1 HPLC-free Preparation of N-terminal Peptide Segments for NCL
213(4)
8.2.2 HPLC-free Preparation of C-terminal Peptide Segments for NCL
217(3)
8.3 Synthesis of Proteins Using the His6 Tag
220(7)
8.3.1 Reversible His6-based Capture Tags
220(1)
8.3.2 His6-based Immobilization for C-to-N Assembly of Crambin
221(1)
8.3.3 His6-based Immobilization for Assembly of Proteins on Microtiter Plates
222(3)
8.3.4 His6 and Hydrazide Tags for Sequential N-to-C Capture and Release
225(2)
8.4 Synthesis of Proteins via Oxime Formation
227(11)
8.4.1 Reversible Oxime-based Capture Tags
227(1)
8.4.2 Oxime-based Immobilization for N-to-C Solid-phase Chemical Ligations
227(6)
8.4.3 Oxime-based Immobilization for C-to-N Solid-phase Chemical Ligations
233(4)
8.4.4 Oxime-based C-to-N Solid-phase Chemical Ligations
237(1)
8.5 Synthesis of Proteins via Hydrazone Formation
238(4)
8.5.1 Reversible Hydrazone-based Capture Tags
238(1)
8.5.2 Hydrazone-based Immobilization for Assembly of Proteins on Microtiter Plates
239(3)
8.6 Synthesis of Proteins Using Click Chemistry
242(2)
8.6.1 Click-based Immobilization for N-to-C Solid-phase Peptide Ligations Using a Protected Alkyne
242(1)
8.6.2 Click-based Immobilization for N-to-C Solid-phase Peptide Ligations Using a Sea Group
243(1)
8.7 Synthesis of Proteins Using the KAHA Ligation
244(2)
8.7.1 The KAHA Ligation
244(1)
8.7.2 HPLC-free Synthesis of Proteins Using the KAHA Ligation
245(1)
8.8 Synthesis of Proteins Using Photocleavable Tags
246(3)
8.8.1 Synthesis of Proteins Using a Photocleavable Biotin-based Purification Tag
246(1)
8.8.2 Synthesis of Proteins Using a Photocleavable His6-based Purification Tag
247(2)
8.9 Conclusion
249(2)
References
251(8)
9 Solid-phase Chemical Ligation 259(26)
Skander A. Abboud
Agnes F. Deimos
Vincent Aucagne
9.1 Introduction
259(3)
9.1.1 The Promises of Solid Phase Chemical Ligation (SPCL)
259(1)
9.1.2 Chemical Ligation Reactions Used for SPCL
260(1)
9.1.3 Key Requirements for a SPCL Strategy
261(1)
9.2 SPCL in the C-to-N Direction
262(6)
9.2.1 Temporary Masking Groups to Enable Iterative Ligations
262(2)
9.2.2 Linkers for C-to-N SPCL
264(4)
9.2.2.1 Use of Same Linker and Solid Support for SPPS and SPCL
265(1)
9.2.2.2 Re-immobilization of the C-Terminal Segment
266(2)
9.3 SPCL in the N-to-C Direction
268(6)
9.3.1 Temporary Masking Groups to Enable Iterative Ligations
268(2)
9.3.2 Linkers for N-to-C SPCL
270(2)
9.3.3 Case Study
272(2)
9.3.4 SPCL with Concomitant Purifications
274(1)
9.4 Post-Ligation Solid-Supported Transformations
274(1)
9.4.1 Chemical Transformations
274(1)
9.4.2 Biochemical Transformations
275(1)
9.5 Solid Support
275(3)
9.6 Conclusion and Perspectives
278(1)
Acknowledgment
278(1)
Appendix
278(2)
References
280(5)
10 Ser/Thr Ligation for Protein Chemical Synthesis 285(22)
Carina Hey Pui Cheung
Xuechen Li
10.1 Serine/Threonine Ligation
287(2)
10.2 Epimerization Issue
289(1)
10.3 Other Aryl Aldehyde Esters
289(1)
10.4 Preparation of Peptide Salicylaldehyde Esters
289(5)
10.5 Scope and Limitations
294(1)
10.6 Strategies of Ser/Thr Ligation for Protein Chemical Synthesis
294(1)
10.7 C-to-N Ser/Thr Ligation
294(2)
10.8 N-to-C Ser/Thr Ligation
296(1)
10.9 One-pot Ser/Thr Ligation and NCL
296(1)
10.10 Bioconjugation
296(2)
10.11 Solubility Issues
298(1)
10.12 Extension of Ser/Thr Ligation
298(4)
10.13 Conclusion
302(1)
References
303(4)
11 Protein Semisynthesis 307(20)
Nam Chu
Philip A. Cole
11.1 Background
307(1)
11.2 Expressed Protein Ligation (EPL)
308(3)
11.2.1 Method Development
308(1)
11.2.2 Applications of EPL for Studying Protein Posttranslational Modifications
309(2)
11.2.3 Site-specific Protein Labeling with N-Hydroxysuccinimide Esters
311(1)
11.3 Cysteine Modifications
311(3)
11.3.1 Dehydroalanine Generation and Applications in Semisynthesis
312(1)
11.3.2 Cysteine Alkylation-related Methods to Introduce Lys Mimics
313(1)
11.4 Enzyme-catalyzed Protein/Peptide Ligations
314(4)
11.4.1 Sortase
314(2)
11.4.2 Butelase-1
316(1)
11.4.3 Subtiligase
317(1)
11.4.4 Trypsiligase
318(1)
11.5 Enzyme-catalyzed Expressed Protein Ligation
318(1)
11.6 Summary and Outlook
319(1)
Acknowledgments
320(1)
References
320(7)
12 Bio-orthogonal Imine Chemistry in Chemical Protein Synthesis 327(30)
Stijn M. Agten
Ingrid Dijkgraaf
Stan H.E. van der Beelen
Tilman M. Hackeng
12.1 Introduction
327(1)
12.2 Carbonyl Functionalization
328(7)
12.3 Aminooxy, Hydrazine, and Hydrazide Functionalization
335(2)
12.4 Oxime Ligation
337(5)
12.5 Hydrazone Ligation
342(2)
12.6 Pictet-Spengler Reaction
344(2)
12.7 Catalysis of Oxime and Hydrazone Ligations
346(2)
References
348(9)
13 Deciphering Protein Folding Using Chemical Protein Synthesis 357(26)
Vladimir Torbeev
13.1 Introduction
357(1)
13.2 Modification of Protein Backbone Amides
358(3)
13.3 Insertion of p-turn Mimetics
361(1)
13.4 Inversion of Chiral Centers in Protein Backbone and Side Chains
362(4)
13.5 Modulating cis-trans Proline Isomerization
366(2)
13.6 Steering Oxidative Protein Folding
368(3)
13.7 Covalent Tethering to Facilitate Folding of Designed Proteins
371(2)
13.8 Discovery of Previously Unknown Protein Folds
373(1)
13.9 Site-specific Labeling with Fluorophores
373(2)
13.10 Foldamers and Foldamer-Peptide Hybrids
375(2)
13.11 Conclusions and Outlook
377(1)
Acknowledgment
378(1)
References
378(5)
14 Chemical Synthesis of Ubiquitinated Proteins for Biochemical Studies 383(28)
Gandhesiri Satish
Ganga B. Vamisetti
Ashraf Brik
14.1 The Ubiquitin System
383(3)
14.2 Non-enzymatic Ubiquitination: Challenges and Opportunities
386(7)
14.2.1 Chemical Synthesis of Ub Building Blocks
387(1)
14.2.2 Isopeptide Ligation
387(3)
14.2.3 Total Chemical Synthesis of Tetra-Ub Chains
390(3)
14.3 Synthesis and Aemisynthesis of Ubiquitinated Proteins
393(8)
14.3.1 Monoubiquitinated Proteins
393(2)
14.3.2 Tetra-ubiquitinated Proteins
395(5)
14.3.3 Modification of Expressed Proteins with Tetra-Ub
400(1)
14.4 Synthesis of Unique Ub Conjugates to Study and Target DUBS
401(2)
14.5 Activity-based Probes
403(2)
14.6 Perspective
405(1)
List of Abbreviations
406(1)
References
407(4)
15 Glycoprotein Synthesis 411(26)
Chaitra Chandrashekar
Kento Iritani
Tatsuya Moriguchi
Yasuhiro Kajihara
15.1 Introduction
411(1)
15.2 Total Chemical Synthesis of Glycoproteins
411(2)
15.3 Semisynthesis of Glycoproteins
413(1)
15.4 Chemoenzymatic Synthesis
413(1)
15.5 α-Synuclein
414(1)
15.6 Hirudin P6
415(1)
15.7 Saposin D
416(1)
15.8 Interleukin 2
417(1)
15.9 Interleukin 25
417(2)
15.10 Mucin 1
419(2)
15.11 Crambin
421(1)
15.12 Tau Protein
422(1)
15.13 Chemical Domain of Fractalkine
423(1)
15.14 CCL1
424(1)
15.15 Interleukin 6
424(1)
15.16 Interleukin 8
425(1)
15.17 Erythropoietin
426(4)
15.18 Trastuzumab
430(2)
15.19 Antifreeze Glycoprotein
432(2)
15.20 Conclusion
434(1)
References
434(3)
16 Chemical Synthesis of Membrane Proteins 437(26)
Alanca Schmid
Christian F.W. Becker
16.1 Introduction
437(1)
16.2 Solid Phase Synthesis of TM Peptides
438(4)
16.3 Purification and Handling Strategies of TM Peptides
442(1)
16.4 Solubility Tags
443(2)
16.4.1 Terminal Tags
443(2)
16.4.2 Side Chain Tags
445(1)
16.5 Removable Solubilizing Backbone Tags
445(4)
16.6 Chemical Synthesis of Membrane Proteins
449(7)
16.6.1 Proteins With 1 TM Domain
449(1)
16.6.2 Proteins with 2 TM Domains
450(4)
16.6.3 Proteins with 3 and More TM Domains
454(2)
16.7 Outlook
456(1)
References
457(6)
17 Chemical Synthesis of Selenoproteins 463(26)
Rebecca N. Dardashti
Reem Ghadir
Hiba Ghareeb
Orit Weil-Ktorza
Norman Metanis
17.1 What are Selenoproteins?
463(3)
17.2 Expression of Selenoproteins
466(3)
17.3 Sec as a Reactive Handle
469(4)
17.4 Synthesis and Semisynthesis of Natural Selenoproteins
473(2)
17.5 Selenium as a Tool for Protein Folding
475(3)
17.6 Conclusions
478(1)
References
478(11)
18 Histone Synthesis 489(26)
Champak Chatterjee
18.1 The Histones and Their Chemical Modifications
489(3)
18.1.1 Histone Proteins
489(1)
18.1.2 Histone Posttranslational Modifications
490(2)
18.2 Chemical Ligation for Histone Synthesis
492(2)
18.2.1 Native Chemical Ligation
492(2)
18.2.2 Expanding the Scope of Native Chemical Ligation With Inteins
494(1)
18.3 Histone Octamer and Nucleosome Core Particle Assembly
494(2)
18.4 Studying the Histone Code With Synthetic Histones
496(10)
18.4.1 Synthesis of Histones Modified by Smaller Functional Groups
497(8)
18.4.1.1 Histone Phosphorylation
497(2)
18.4.1.2 Histone Acetylation
499(3)
18.4.1.3 Histone Methylation
502(3)
18.4.2 Synthesis of Sumoylated Histones
505(1)
18.5 Conclusions
506(1)
Acknowledgments
506(1)
References
506(9)
19 Application of Chemical Synthesis to Engineer Protein Backbone Connectivity 515(18)
Chino C. Cabalteja
W. Seth Horne
19.1 Introduction
515(1)
19.2 Backbone Engineering to Facilitate Synthesis
516(1)
19.3 Backbone Engineering to Explore the Consequences of Chirality
517(3)
19.4 Backbone Engineering to Understand and Control Folding
520(2)
19.5 Backbone Engineering to Create Protein Mimetics
522(3)
19.6 Conclusions
525(1)
References
526(7)
20 Beyond Phosphate Esters: Synthesis of Unusually Phosphorylated Peptides and Proteins for Proteomic Research 533(20)
Anett Hauser
Christian E. Stieger
Christian P.R. Hackenberger
20.1 Introduction
533(1)
20.2 General Methods for the Incorporation of Hydroxy-phosphorylated Amino Acids into Peptides and Proteins
534(3)
20.3 Incorporation of Other Phosphorylated Nucleophilic Amino Acids into Peptides and Proteins
537(4)
20.3.1 Phosphoarginine (pArg)
537(1)
20.3.2 Phosphohistidine (pHis)
538(1)
20.3.3 Phospholysine (pLys)
539(1)
20.3.4 Phosphocysteine (pCys)
539(2)
20.3.5 Pyrophosphorylation of Serine and Threonine (ppSer, ppThr)
541(1)
20.4 Development of Phospho-analogues as Mimics for Endogenous Phospho-Amino Acids
541(6)
20.4.1 Analogues of Phosphoserine, Phosphothreonine, and Phosphotyrosine
541(2)
20.4.2 Stable Analogues of Phosphoaspartate and Phosphoglutamate
543(1)
20.4.3 Stable Analogues of Phosphoarginine
544(1)
20.4.4 Stable Analogues of Phosphohistidine
545(2)
20.4.5 Stable Analogues of Pyrophosphorylated Serine
547(1)
20.5 Conclusion
547(1)
References
547(6)
21 Cyclic Peptides via Ligation Methods 553
Tristan J. Tyler
David J. Craik
21.1 Introduction
553(1)
21.2 Cyclic Peptide Synthesis
554(3)
21.3 Orbitides
557(2)
21.4 Paws-derived Peptides(PDPs)
559(2)
21.5 Cyclic Conotoxins
561(2)
21.6 0-Defensins
563(1)
21.7 Cyclotides
563(5)
21.8 Outlook
568(1)
Acknowledgments
568(1)
Funding
568(1)
References
569
Index 57

Back To Results
Showing Item 1 of 1

Additional Resources